Theory of Structures A cantilever of length 2 cm and depth 10 cm tapers in plan from a width 24 cm to zero at its free end. If the modulus of elasticity of the material is 0.2 × 106 N/mm², the deflection of the free end, is 2 mm 3 mm 5 mm 4 mm 2 mm 3 mm 5 mm 4 mm ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A simply supported beam which carries a uniformly distributed load has two equal overhangs. To have maximum B.M. produced in the beam least possible, the ratio of the length of the overhang to the total length of the beam, is 0.307 0.508 0.207 0.407 0.307 0.508 0.207 0.407 ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures In plastic analysis, the shape factor for a triangular section, is 1.34 2.34 2.5 1.5 1.34 2.34 2.5 1.5 ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A lift of weight W is lifted by a rope with an acceleration f. If the area of cross-section of the rope is A, the stress in the rope is (1 – g/f)/A [W (2 + g/f)]/A [W (2 + f/G)]/A [W (1 + f/ G)]/ A (1 – g/f)/A [W (2 + g/f)]/A [W (2 + f/G)]/A [W (1 + f/ G)]/ A ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures If E, N, K and 1/m are modulus of elasticity, modulus of rigidity. Bulk modulus and Poisson ratio of the material, the following relationship holds good All of these (3/2)K (1 – 2/m) = N (1 + 1/m) E = 3K (1 – 2/m) E = 2N (1 + 1/m) All of these (3/2)K (1 – 2/m) = N (1 + 1/m) E = 3K (1 – 2/m) E = 2N (1 + 1/m) ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures The maximum deflection of a simply supported beam of span L, carrying an isolated load at the centre of the span; flexural rigidity being EI, is WL3/8EL WL3/24EL WL3/3EL WL3/48EL WL3/8EL WL3/24EL WL3/3EL WL3/48EL ANSWER DOWNLOAD EXAMIANS APP