Alligation or Mixture problems
Two bottles contains mixture of milk and water. First bottle contains 64% milk and second bottle contains 26% water. In what ratio these two mixtures are mixed so that new mixture contains 68% milk?
% of milk in first bottle = 64% % of milk in second bottle = 100 - 26 = 74% Now, ATQ 64% 74% 68% 6 4 Hence, by using allegation method, Required ratio = 3 : 2
Jar A has 36 litres of mixture of milk and water in the respective ratio of 5 : 4 => Quantity of milk in Jar A = 5/9 x 36 = 20 litres Quantity of water in Jar A = 36 - 20 = 16 litres Let quantity of water in Jar B = x litres => Quantity of milk in Jar B = (20 - x) litres Acc. to ques, =>[20 + (20-x)]/(16+x) = 5/3 => 120?3x = 80+5x => 5x +3x = 120?80 => 8x = 40 => 5 litres.
As per figure we can calculate the ration as belowNumber of officers / Number of workers = 1000 / 7000 = 1 / 7 No. of officers = 1 / (1 + 7) × 400 = 50 No. of workers = 400 ? 50 = 350
Number of liters of water in 150 liters of the mixture = 20% of 150 = 20/100 x 150 = 30 liters.P liters of water added to the mixture to make water 25% of the new mixture.Total amount of water becomes (30 + P) and total volume of mixture is (150 + P).(30 + P) = 25/100 x (150 + P)120 + 4P = 150 + P => P = 10 liters.