Theory of Structures Total strain energy theory for the failure of a material at elastic limit, is known Haig’s theory St. Venant’s theory Rankine’s theory Guest’s or Trecas’ theory Haig’s theory St. Venant’s theory Rankine’s theory Guest’s or Trecas’ theory ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A simply supported uniform rectangular bar breadth b, depth d and length L carries an isolated load W at its mid-span. The same bar experiences an extension e under same tensile load. The ratio of the maximum deflection to the elongation, is L/d L/2d (L/2d)² (L/3d)² L/d L/2d (L/2d)² (L/3d)² ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A simply supported beam carries varying load from zero at one end and w at the other end. If the length of the beam is a, the maximum bending moment will be wa²/27 w²a wa² wa/27 wa²/27 w²a wa² wa/27 ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures Maximum shear stress theory for the failure of a material at the elastic limit, is known St. Venant's theory Guest's or Trecas' theory Haig's theory Rankine's theory St. Venant's theory Guest's or Trecas' theory Haig's theory Rankine's theory ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A shaft is subjected to bending moment M and a torque T simultaneously. The ratio of the maximum bending stress to maximum shear stress developed in the shaft, is 2T/M M/T 2M/ T T/M 2T/M M/T 2M/ T T/M ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures For determining the support reactions at A and B of a three hinged arch, points B and Care joined and produced to intersect the load line at D and a line parallel to the load line through A at D’. Distances AD, DD’ and AD’ when measured were 4 cm, 3 cm and 5 cm respectively. The angle between the reactions at A and B is 60° 90° 45° 30° 60° 90° 45° 30° ANSWER DOWNLOAD EXAMIANS APP