Theory of Structures The greatest load which a spring can carry without getting permanently distorted, is called Proof stress Proof resilience Stiffness Proof load Proof stress Proof resilience Stiffness Proof load ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures The ratio of the length and diameter of a simply supported uniform circular beam which experiences maximum bending stress equal to tensile stress due to same load at its mid span, is 1/8 1/2 1/3 1/4 1/8 1/2 1/3 1/4 ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures In the truss, the force in the member AC is 8.75 t tensile t compressive 6.25 t compressive t tensile 8.75 t tensile t compressive 6.25 t compressive t tensile ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures If E, N, K and 1/m are modulus of elasticity, modulus of rigidity. Bulk modulus and Poisson ratio of the material, the following relationship holds good E = 2N (1 + 1/m) All of these (3/2)K (1 – 2/m) = N (1 + 1/m) E = 3K (1 – 2/m) E = 2N (1 + 1/m) All of these (3/2)K (1 – 2/m) = N (1 + 1/m) E = 3K (1 – 2/m) ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A rolled steel joist is simply supported at its ends and carries a uniformly distributed load which causes a maximum deflection of 10 mm and slope at the ends of 0.002 radian. The length of the joist will be, 15 M 14 M 16 m 13 M 15 M 14 M 16 m 13 M ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A steel bar 5 m × 50 mm is loaded with 250,000 N. If the modulus of elasticity of the material is 0.2 MN/mm² and Poisson’s ratio is 0.25, the change in the volume of the bar is: 3.125 cm³ 4.125 cm² 2.125 cm³ 1.125 cm³ 3.125 cm³ 4.125 cm² 2.125 cm³ 1.125 cm³ ANSWER DOWNLOAD EXAMIANS APP