Original circumference = 2?r New circumference = (150 /100) x 2 ?r = 3?r 2?R = 3?r? R = 3r/2 Original area = ?r2New area = ?R2= ?9r2 / 4 = 9?r2/4Increase in area = (9?r2/4 ) - (?r2)= (5/4) ?r2Req. increase per cent = [{(5/4) ?r2} / {?r2}] x 100 = 125 %
Area of the square field = 1 hectare = 10000 m2Side of the square = ? 10000 m = 100 mSide of another square field = 100 + 1 = 101 m? Required difference of area = [(101)2 - (100)2] m2=[(101 + 100 ) (101 - 100) ] m2= 201 m2
Let original length = x and original breadth = y. Original area = xy. New length = x . 2 New breadth = 3y. New area = ❨ x x 3y ❩ = 3 xy. 2 2 ∴ Increase % = ❨ 1 xy x 1 x 100 ❩% = 50%