Alligation or Mixture problems
Milk and water are mixed in a vessel A as 4:1 and in vessel B as 3:2. For vessel C, if one takes equal quantities from A and B, find the ratio of milk to water in C.
Ratio of Milk and water in a vessel A is 4 : 1 Ratio of Milk and water in a vessel B is 3 : 2 Ratio of only milk in vessel A = 4 : 5 Ratio of only milk in vessel B = 3 : 5 Let 'x' be the quantity of milk in vessel C Now as equal quantities are taken out from both vessels A & B => 4/5 : 3/5 x 3/5-x x - 4/5 => 3 5 - x x - 4 5 = 1 1 (equal quantities) => x = 7/10 Therefore, quantity of milk in vessel C = 7 => Water quantity = 10 - 7 = 3 Hence the ratio of milk & water in vessel 3 is 7 : 3
pool : kerosene 3 : 2(initially) 2 : 3(after replacement) R e m a i n i n g Q u a n t i t y I n i t i a l Q u a n t i t y = 1 - R e p l a c e d Q u a n t i t y T o t a l Q u a n t i t y (for petrol) 2 3 = 1 - 10 k => K = 30 Therefore the total quantity of the mixture in the container is 30 liters.
Milk in 1-litre mixture of A = 4/7 litre. Milk in 1-litre mixture of B = 2/5 litre. Milk in 1-litre mixture of C = 1/2 litre. By rule of alligation we have required ratio X:Y X : Y 4/7 2/5 \ / (Mean ratio) (1/2) / \ (1/2 ? 2/5) : (4/7 ? 1/2) 1/10 1/1 4 So Required ratio = X : Y = 1/10 : 1/14 = 7:5
Ratio of milk and water = 2 : 1Quantity of milk = 60 X 2/3 = 40 litreQuantity of water = 20 litreTo make ratio, 1: 2, we have to double the water that of milkSo, water should be 80 litre.That means 80 ? 20 = 60 litre water to be added.
Milk Water 74% 26% (initially) 76% 24% ( after replacement) Left amount = Initial amount 1 - r e p l a c e d a m o u n t t o t a l a m o u n t 24 = 26 1 - 7 k => k = 91